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Abstract

Practical syntheses of the C9-C14 sterotriadmd the C1-C8 polyene urtin ansatrienine A (mycotriene)
(1a), and other ansamycin antibiotics is described. A key step for controlling the configuration of the stereogenic
center at C13 involves the stereoselective reduction of eddnesing the Evans—Tishchenko reaction. © 1999
Elsevier Science Ltd. All rights reserved.

The ansamycins comprise a growing class of complex macrolactam antibiotics from microbial
sources. They are characterized by a cyclic structure in which an aliphatic ansa chain forms a bridge
between two non-adjacent positions of a cyatisystem. Many of them exhibit antibacterial, antifungal
or antitumor activity. A subgroup which has seen increasing interest lately is the benzenic ansamycins

with 17 carbons and one nitrogen atom ansa chain.
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In 1981, one of the first examples, the ansatrienibeeand 2a, were isolated from the fermentation
broth of Streptomyces collinusy Zahner, Zeeck and coworkersndependently, the groups of Natori,
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Sueda and Sasakidescribed identical metabolites froBtreptomyces rishiriensiwhich they named
mycotrienes. Additionally, more potent members were found, namely the trienomy&afemnd the
more recently discovered cytotrientls® as well as the highly active thiazinotrienomycings® To date,
only Smith and Panek have reported the total syntheses of mycotrienin and trienbtytctnis family
of ansamycins still represents a significant challenge to the synthetic chemist.

In this paper we describe practical syntheses of the C1-C8 and C9-C14 anitkb. Methyl ester
78 was the starting point for the synthesis of fragm&iiScheme 1). Reduction followed by Lewis acid
mediated allylation of the intermediate aldehyde with 1-trimethylsilyl-2-propene gave rise to a 7.5:1
diastereomeric mixture of homoallyl alcohols which were protectetedasutyldimethylsilyl (TBS)
ethers8.% From this stage, it took five synthetic steps for efficiently preparing allylic alcéhdlhe
sequence was initiated by ozonolysis of the alkenic double bond followed by reductive work-up. At this
stage, the diastereomers were separated by column chromatography. The primary alcohol was protected
as 2-(trimethylsilyl)ethoxymethyl (SEM) ether, which enabled us to remove the benzyl protection. This
was followed by periodinane oxidati&hof the newly formed alcohol. Nucleophilic addition of the
Grignard reagent derived from 2-bromo-1-propene furnished epimeric allyl alc@hoks 2.5:1 ratio.
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Scheme 1. Reagents and conditions: (a) dihalCH,Cl,, -78°C, 1 h; (b) TiCl, -78°C, CHCI,, 15 min, then
H,C=CH,CH,SiMez, 15 min, 71% (for two stepsgynanti=1:7.5; (c) TBSCI, imidazole, DMF, 35°C, 88%; (d:CMeOH,

—-78°C, then 4-5 equiv. NaBK10°C, 95%; (e) SEMCIPrLEN, CH,Cl,, 40°C, 95%; (f) H, Pd/C, ethyl acetate, 98%; (Q)
Dess—Martin periodinane [lif], CH,Cl,, rt; (h) 2-bromo-1-propene, Mg, THF, then aldehyde, 83Gt, 72% (for two steps);

(i) TBAF, ms 4 A, THF, 83%; (j) DDQ, GHs, 60°C, 2d, 82%; (k) Sml PhCHO, THF, -10°C, 93%; (l) BzCl, pyr, -10°G rt,

85% (+9%11); (m) 10 equiv. MgBs-OE®, 2.5 equiv!BuSH, E4O, rt, 95%

At this stage it was uncertain which isomer prevailed. A Felkin—Ahn based transition state would
preferentially lead to theynanti-isomer. However, under chelate-Cram conditions formation of the
oppositeanti,anti-stereoisomer would be favoured. Due to the low diastereoselectivity of the addition
process and the stereochemical ambiguity related to the outcome of the reaction, we reckoned that
applying the Evans-Tishchenko reductibron B-hydroxy-ketone10 would selectively furnish the
desired stereotriade. The Evans—Tishchenko reaction requires a solution pfiSTHF and the
presence of an aldehyde and results in the directed reductiorfdfyaroxy ketone to afford aanti
diol with selective formation of a monoestér.For this purpose, alcohol8 were desilylated to the
corresponding epimeric 1,3-diols which were convertetit§f «]p2° +4.2 (c=1.3, CHC})} either using
DDQ or triphenylbismuth carbondfeas selective oxidants, the latter being too expensive for large scale
oxidations. Treatment dfO with an excess of samarium diiodide and benzaldehyde gave monobenzoate
11{[ ®]p?*-15.7 €=1.27, CHC})} as a single diastereomer in excellent yield. The stereochemical result
of this reduction can be rationalized by assuming transition 4taigith all C-substituents occupying
the equatorial positions. Final proof for the desired configurations of the three consecutive stereogenic
centers came from an X-ray structural investigation of dibenzbdt@-ig. 1), which was obtained by
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Figure 1. Thermal ellipsoid plot df4 (ellipsoids are drawn in a 50% probability level)

benzoylation of the allylic alcohol group followed by removal of the SEM-protection using an alkyl thiol
in the presence of MgBras the only feasable reagent systérithe resulting alcohol 2 {[ «]p?* +15.4
(c=1.18, CHC})} is an ideal precursor for fragmebtand in addition was employed for synthesizitgy
(TPSCI, imidazole, DMF, 50°C, 579%.

The synthesis of fragmert commenced with a regioselective reduction 8f-dimethyl malatel5
following a known procedure (Scheme ¥)Simple functional group manipulations led to alcoll
{[ ¢]p?° +11.9 €=1.0, CHCB)} which was required for the alkenation step. Dess—Martin oxid&fion
followed by Horner—-Emmons-olefination using phosphoi&efforded diend 7 {[ «]p%° +18.8 =1.0,
CHCI3)} which was converted into the target benzothiaz6lin two steps which is required for the
coupling of fragment$ with 6 under Julia-alkenation conditioR$.
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Scheme 2. Reagents and conditions: (a)BWe,, NaBH,, THF, rt; (b) TrCl, NEt, 4-DMAP, DMF, rt, 73%; (c) AgO, Mel,
CH,Cl,, A, 21d, 76%; (d) LiAlH,, EtLO, 0°C— rt, 95%; (e) 4-methoxybenzyl chloride (PMBCI), NaH, DMF, 0°€ rt,
97%; (f) Lewatit SP 1080, MeOH/CHgI(7:1), 3—4d, 65%, (+12% starting trityl ether); (g) Dess—Martin periodinan&[lit.
CH,Cly, rt, 1.5 h; (h)18, NaHMDS, THF, —-70°G— —-40°C, then addition of aldehyde, 67% (for two steps); (i) dibal-H,Ch],
-70°C— rt, 81%; (j) PPh, DEAD, 2-mercapto-benzothiazole, THF, 32%; (k)®3, M0;0,4(NH4)s-4H,O, EtOH, rt, 24 h,
85%
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In summary, we developed highly stereoselective syntheses of the C1-C8 and C9-CHBA(lihits
steps; 6.8% overall yield) an8 (13 steps; 20% overall yield) of most members of the benzenic
ansamycins. The Evans—Tishchenko reduction was efficiently applied for controlling the stereochemistry
at C13.
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